Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,3-Diphenyl-6,7-dihydro-5*H*-1,4-diazepine

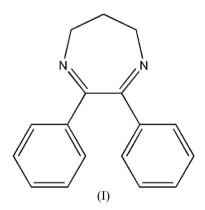
Shu-Ping Yang, a* Li-Jun Han, b Da-Qi Wang^c and Tie-Zhu Ding^d

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and dDepartment of Physics, Inner Mongolia University, Hohhot 010021, People's Republic of China

Correspondence e-mailyangshuping@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.041 wR factor = 0.140 Data-to-parameter ratio = 13.7


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, C₁₇H₁₆N₂, the 1,4-diazepine ring adopts a distorted boat conformation, in which the sum of the internal angles is 809°. The molecules are linked by a pair of C−H···N hydrogen bonds into a $C_2^2(14)$ chain along the $[10\overline{1}]$ direction.

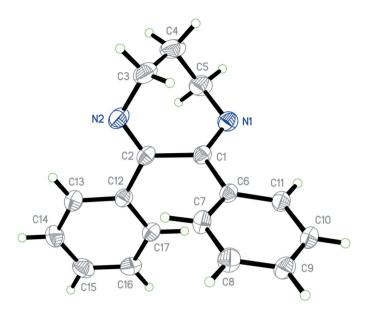
Received 22 November 2006 Accepted 4 December 2006

Comment

1,4-Diazepine derivatives are known to have a broad range of biological activities, such as selective inhibition of Rho-kinase (Tamura et al., 2005), and as HDM2 antagonists used in the treatment of certain cancers (Raboisson et al., 2005). The crystal structures of some 1,4-diazepine derivatives have been reported (Nesterov, 2002; Clark et al., 1999). We here report the crystal structure of a 1,4-diazepine derivative, 6,7-hydro-2,3-diphenyl-1,4-diazepine, (I).

In the molecule of compound (I) (Fig. 1), the 1,4-diazepine ring adopts a distorted boat conformation, in which the sum of the internal angles is 809° (Table 1). The two phenyl rings are located on opposite sides of the seven-membered ring and they enclose a dihedral angle of 82.58 (6)°.

In the crystal structure of (I), the molecules are linked by a pair of C-H···N hydrogen bonds into a $C_2^2(14)$ chain (Bernstein *et al.*, 1995) along the $[10\overline{1}]$ direction (Fig. 2 and Table 2). Atom C16 in the molecule at (x, y, z) act as hydrogen-bond donor to atom N1 in the molecule at $(\frac{1}{2} + x)$ $\frac{1}{2} - y$, $-\frac{1}{2} + z$). There are no significant intermolecular interaction between the chains.


Experimental

The title compound, (I), was synthesized by the condensation reaction between propane-1,3-diamine and benzoin in ethanol. Colourless crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 392–393 K).

doi:10.1107/S160053680605241X

© 2007 International Union of Crystallography All rights reserved

o188

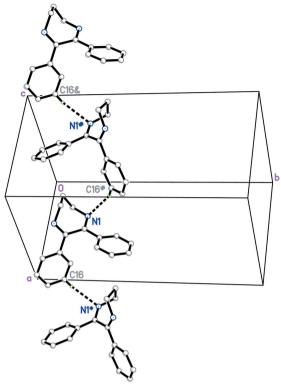
Figure 1The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

$C_{17}H_{16}N_2$	Z = 4
$M_r = 248.32$	$D_x = 1.212 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.708 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 17.649 (3) Å	T = 298 (2) K
c = 9.171 (2) Å	Block, colourless
$\beta = 105.115 (2)^{\circ}$	$0.63 \times 0.58 \times 0.52 \text{ mm}$
$V = 1360.7 (5) \text{ Å}^3$	

Data collection

Siemens SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.956, T_{\max} = 0.964$


6849 measured reflections 2375 independent reflections 1671 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$ $\theta_{\rm max} = 25.0^{\circ}$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0742P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.041$ $where <math>P = (F_o^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{max} < 0.001$ 2375 reflections $\Delta\rho_{min} = -0.15$ e Å $^{-3}$ $\Delta\rho_{min} = -0.15$ e Å $^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.44 (3)

Table 1 Selected geometric parameters (Å, °).

N1-C1	1.276 (2)	N2-C2	1.274 (2)
C1-N1-C5 C2-N2-C3 N2-C3-C4	116.47 (16) 116.18 (16) 110.48 (17)	C3-C4-C5 N1-C5-C4	112.24 (16) 111.32 (16)
N2-C3-C4-C5	-47.0 (2)	C3-C4-C5-N1	-43.1 (2)

Figure 2 Part of the crystal structure of (I), showing the formation of a $C_2^2(14)$ chain along the $[10\overline{1}]$ direction. For clarity, H atoms not involved in the motifs shown have been omitted. [Symmetry codes: $(*)\frac{1}{2}+x,\frac{1}{2}-y,-\frac{1}{2}+z$; $(\#)-\frac{1}{2}+x,\frac{1}{2}-y,\frac{1}{2}+z$; (&)-1+x,y,1+z]. Dashed lines indicate hydrogen bonds.

Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdot\cdot\cdot A$
C16-H16···N1i	0.93	2.62	3.454 (2)	149
Symmetry code: (i) x	$+\frac{1}{2}$, $-y + \frac{1}{2}$, $z -$	1/2.		

All H atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.93 Å for aromatic H atoms, C—H = 0.97 Å for methylene H atoms and $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C})$ for all H atoms

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.

Clark, B. A. J., Evans, M. C., Lloyd, D., McNab, H. & Parsons, S. (1999). Acta Cryst. C55, 1725–1727.
Nesterov, V. V. (2002). E58, o1458–o1459.

organic papers

- Raboisson, P., José Marugán, J., Schubert, C., Koblish, H. K., Lu, T.-B., Zhao, S.-Y., Player, M. R., Maroney, A. C., Reed, R. L., Huebert, N. D., Lattanze, J., Parks, D. J. & Cummings, M. D. (2005). *Bioorg. Med. Chem. Lett.* **15**, 1857–1861.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tamura, M., Nakao, H., Yoshizaki, H., Shiratsuchi, M., Shigyo, H., Yamada, H., Ozawa, T., Totsuka, J. & Hidaka, H. (2005). BBA-Proteins Proteom. 1754, 245–252.

o190 Yang et al. • $C_{17}H_{16}N_2$